
COMP461205: Computer Networks Fall 2024

Computer Networks Lab#1: Chat Room Project

1 Introduction

This is the first lab for COMP461205: Computer Networks. In this project, you will
implement a chat room by completing four stages:

1. In Stage 1, you will learn how to perform network programming using socket in-
terfaces. You will implement a well-encapsulated, connection-oriented TCPSocket by
completing several simple member functions.

2. In Stage 2, you will understand the client-server programming model and learn how
to use mutexes properly in multi-threaded concurrent programming to implement a
server.

3. In Stage 3, you will gain a deeper understanding of multi-threading synchronization
methods and implement a message queue.

4. In Stage 4, you will learn about TCP packet sticking issues, and you will need to
implement a codec to separate each message correctly.

In the chat room, any message sent by one person will be received by all other participants
in the chat room. This allows everyone in the chat room to communicate with each other.

Your task is not to implement the entire project. Instead, you only need to write a small
portion of the C++ code. The quality of this code will reflect your understanding of the
lab.

2 Important Notes

Independent Work: The code you submit must be written by you. You are allowed to
discuss with your classmates, but you cannot view their code or show your code to them.
If you discuss the implementation of any stage with other students, please indicate this
in the comments within your code.

Operating System Requirements: Your code will be tested on Ubuntu 22.04 LTS
with g++ 11.4.0, so it is recommended that you complete the lab in this environment.
However, you may also use other Linux distributions (if Ubuntu, version 18.04 or above
is recommended) or macOS. If your computer uses Windows, you can install a virtual
machine to perform the lab.

Using CMake for Project Build Management: Ensure that the CMake version on
your system is 3.8 or higher to support the C++17 standard. You can use either GCC or
Clang for compilation.

Using Git for Version Control: It is recommended to use Git for managing your
project, as this will help you track progress and maintain a history of your code. However,
please be aware that if you host your code on a public platform (such as GitHub), ensure
your repository is private.

1

COMP461205: Computer Networks Fall 2024

3 A Brief Overview

Before diving into the detailed tasks, it’s a good idea to have a rough understanding of
the overall project. You need to carefully consider how participants in the chat room
establish connections and communicate. Once you’ve decided on a solution, you can then
focus on the specific implementation methods to ensure the project functions correctly.

3.1 Network Topology

In this lab, the TCP protocol will be used as the transport protocol. This means that
if process a and process b want to communicate directly, a connection must first be
established between them. For ease of discussion, we treat each process in the chat room
as a node and each direct connection as an edge. This allows us to abstract the chat room
application as an undirected graph.

Assume there are n processes in the chat room. We need to design a topology that ensures
smooth application performance while minimizing resource usage. One simple idea is to
establish a connection between every pair of nodes, forming a complete graph. However,
this would require O(n2) edges and consume excessive resources; for example, adding just
one more node would necessitate O(n) additional edges.

The approach you will adopt is to introduce a special node s, where the remaining n
nodes each establish a connection with s and communicate with other nodes indirectly
through it. This reduces the number of edges to O(n) and reduces the cost of dynamically
adding or removing nodes. Figure 1 is a comparison of topologies. Typically, s is referred
to as the server, while the other nodes are called clients, and this model is known as
the client-server model. In this model, the server passively handles client requests and
provides services to them. In the chatroom, when client a wants to send a message, it
sends the message to the server. The server, upon receiving the message, forwards it to
all other clients, allowing everyone to receive a’s message.

1
2

3

4

5

6
7

8

9

10

11

12
1

2

3

4

5

6
7

8

9

10

11

12

s

Figure 1: Comparison of Topologies. The left side shows a complete graph, while the
right side shows a star topology with an additional node s.

2

COMP461205: Computer Networks Fall 2024

3.2 Socket

A socket, or network socket, provides a method for network communication. The appli-
cation layer can use the services of the transport layer, such as the TCP protocol, via the
API provided by sockets. Refer to Section 6.1.3 in Chapter 6 of the textbook to see how
two processes in a network establish connections and communicate.

In Linux/macOS, everything is treated as a file, and a socket is no exception. When the
socket() function is successfully called, it returns a file descriptor, denoted as fds, which
is essentially an index for a file1. After a connection request is accepted via the accept()

function, another file descriptor, fda, is returned. By reading from and writing to fda,
you can achieve information transmission. Meanwhile, accept() can still be called on fds,
as they represent two different sockets.

Assume process a establishes a reliable TCP connection with another process b in the
network using the socket fda, while process b has a corresponding socket fdb. You can
think of the connection between them as a two-way pipe, with one end being fda and
the other being fdb. When process a calls send() to transmit some bytes, the operating
system simply copies the bytes into the send buffer in the kernel. In blocking mode, the
process is blocked until the message is successfully copied. When and how the data is
sent, and in what segment size, are handled by TCP. Similarly, when calling recv(), it
merely checks the receive buffer in the kernel. If the buffer is empty, the process blocks
(in blocking mode); otherwise, it reads bytes from the buffer. See Figure 2.

send buffer

recv buffer send buffer

recv buffermsg
send

. . .
. . .

msg
recv

recv

send

. . .

. . .

Figure 2: Communication flow between two ends using socket programming.

3.3 Concurrent Programming

Since the server needs to interact with n clients, there are n logical control flows. To re-
spond to asynchronous client requests, we need an application-level concurrency technique
to build a concurrent program. Several methods can achieve concurrent programming,
such as processes, I/O multiplexing, and threads. In this project, we will use multithread-
ing to support concurrency. You don’t need to worry about creating or destroying threads,
as that has already been handled for you. Instead, you will focus on another important
issue: thread synchronization. Since different threads share variables, such as global vari-
ables, simultaneous access to the same memory address can lead to synchronization errors.

1In the following context, the term “file descriptor” refers to the file it points to, unless otherwise
stated.

3

COMP461205: Computer Networks Fall 2024

You will use the mutex class, available since C++11, to implement a mutual exclusion lock
for thread synchronization.

4 Getting Started

Please ensure the following:

• The lab environment is Linux/macOS. If you don’t have a Linux/macOS system, it
is recommended to use a VM for this lab.

• The compiler supports C++17. You can check the gcc version by running gcc --version ;
gcc 7 or above fully supports C++17.

• CMake version is 3.8 or higher.

Next, follow these commands in sequence to fetch and build the starter code:

1. Run git clone https://github.com/KingSiong/chat-room.git to download the source
code prepared for this lab.

2. Enter the lab directory: cd chat-room .

3. Read the CMakeLists.txt file and generate the corresponding build files under build/:
cmake -S . -B build .

4. Enter the build/ directory: cd build .

5. Build the project according to the Makefile: make .

5 Chat Room

This lab involves implementing application-level concurrency using multithreading and
building a network application–a chat room–using socket programming. In this section,
you will first understand the overall structure and logic of the code. Then, you only need
to focus on implementing a few member functions of several encapsulated classes, which
form the core parts of the chat room.

The project’s file structure is shown in Figure 3. In the client/ directory, you’ll find
the Client class and some utility functions. Similarly, the server/ directory contains the
Server class, and utils/ holds useful functions and utility classes required for the project.
The demo/ directory contains applications implementation, and tests/ includes a series of
test programs. Please do NOT modify the content in tests/.

In the chat room application, the client will eventually create two peer threads for sending
and receiving data (see client/utils.hh). On the server side, a sending thread and several
receiving threads will be created to handle messages from each client (see server/utils.hh).

In this lab, you don’t need to worry about the overall logic; you should focus on an
object-oriented approach. You will go through four stages, each requiring you to write

4

COMP461205: Computer Networks Fall 2024

only a small piece of C++ code (with a total of less than 200 lines) to implement some
interfaces.

chat-room
├── CMakeLists.txt
├── client
│ ├── client.cc
│ ├── client.hh
│ └── utils.hh
├── demo
│ ├── ...
├── server
│ ├── server.cc
│ ├── server.hh
│ └── utils.hh
├── tests
│ ├── ...
└── utils
 ├── codec.cc
 ├── codec.hh
 ├── common.hh
 ├── msg_queue.cc
 ├── msg_queue.hh
 ├── tcp_socket.cc
 ├── tcp_socket.hh
 └── thread_pool.hpp

Figure 3: File structure of chat-room.

Warning: This lab will enable -O2 optimization. Please follow C++ standards when
writing code and avoid undefined behavior, such as non-void functions without return
values. Otherwise, it may lead to unexpected errors or crashes.

5.1 Stage 1: TCP Socket

In the first stage, you will need to complete the member functions of a TCPSocket class
that provides a full-duplex, reliable stream based on TCP. To achieve this, you need to
understand several system call functions. You can run man 2 sys-call-name for more
information or refer to https://man7.org/linux/man-pages/dir_section_2.html.

• socket creates a communication endpoint, returning a file descriptor that can be
used to establish connections or transmit messages.

int socket(int domain , int type , int protocol);

the domain argument specifies the protocol family or communication domain that
determines the addressing scheme used by the socket. We use AF_INET for communi-
cation over IPv4. type specifies the communication semantics. We use SOCK_STREAM

to provide sequenced, reliable, two-way, connection-based byte streams. And we use
IPPROTO_TCP as protocol to support this type.

• setsockopt is used to configure various options at different levels for a socket. It
allows you to control socket behavior, such as enabling reusable addresses.

5

COMP461205: Computer Networks Fall 2024

int setsockopt(int sockfd , int level , int optname ,

const void *optval , socklen_t optlen);

sockfd indicates the file descriptor of the socket you want to configure. You only need
to manipulate options at the sockets API level, and level is specified as SOL_SOCKET.
optname is the specific option you want to set (e.g., SO_REUSEADDR, SO_RCVBUF). The
arguments optval and optlen are used to access option values.

• bind is used to bind a name to a socket. This is particularly important for server
applications, where the server needs to bind its socket to a known address or port
so that clients know how to connect to it.

int bind(int sockfd , const struct sockaddr *addr ,

socklen_t addrlen);

sockaddr is a generic structure used to represent a socket address. It’s often used for
casting to more specific address structures like sockaddr_in or sockaddr_un. Here you
should use sockaddr_in for IPv4 addresses, whose structure is defined as follows:

struct sockaddr_in {

sa_family_t sin_family; /* AF_INET */

in_port_t sin_port; /* Port number */

struct in_addr sin_addr; /* IPv4 address */

};

• listen is used by a server to indicate that it is willing to accept incoming connection
requests on a socket.

int listen(int sockfd , int backlog);

The backlog argument defines the maximum number of pending connections that
can be queued up before the kernel starts rejecting new connections. This also
indicates that the listen() call is non-blocking.

• accept is used by a server to accept an incoming connection from a client. When
a client tries to connect to a server, the server can call accept() to complete the
connection process and obtain a new socket for communication with that client.

int accept(int sockfd , struct sockaddr *_Nullable restrict addr ,

socklen_t *_Nullable restrict addrlen);

• connect is used in socket programming by a client to establish a connection with a
server.

int connect(int sockfd , const struct sockaddr *addr ,

socklen_t addrlen);

addr is a pointer to a sockaddr structure that contains the server’s address and port
to which the client wants to connect.

• send is easy to understand, which allows you to transmit data over a connection-
oriented (TCP) or connectionless (UDP) socket.

ssize_t send(int sockfd , const void *buf , size_t len , int flags);

6

COMP461205: Computer Networks Fall 2024

• recv is used to receive data from a socket.

ssize_t recv(int sockfd , void *buf , size_t len , int flags);

By default, both send() and recv() operate in blocking mode. Please keep this
configuration for this lab.

In Stage 1, you only need to modify utils/tcp_socket.cc. The sections you need to
complete will have TODO comments. Once you have implemented the TCPSocket class,
run make , and then run ./A and ./B in separate terminals. You will see an end-
to-end interactive chat system. Afterward, run make stage1 to automatically test your
implementation. If everything is working correctly, you will see the following:

[100%] Testing Stage #1: TCPSocket ...

Test project /home/chat -room/build

Start 1: t_socket_member_function

1/2 Test #1: t_socket_member_function Passed 0.44 sec

Start 2: t_socket_p2p

2/2 Test #2: t_socket_p2p Passed 0.28 sec

100% tests passed , 0 tests failed out of 2

5.2 Stage 2: Server

Please open server/server.cc, where you need to implement 4 interfaces for Server:

// send ‘‘msg ’’ to some clients: ‘‘client_socks ’’

void send(std::vector <TCPSocketPtr > &client_socks ,

const std:: string &msg);

// send ‘‘msg ’’ to all clients connected to this server

void send_all(const std:: string &msg);

// add the client ‘‘client_sock ’’ to ‘‘_client_socks ’’

void add_client(TCPSocketPtr client_sock);

// delete the client ‘‘client_sock ’’ from ‘‘_client_socks ’’

// and shutdown the corresponding socket

void del_client(TCPSocketPtr client_sock);

You need to manage the clients connecting to the server using a std::set, which might
seem straightforward. However, you should be aware that many functions of the std::set

container are not thread-safe, meaning you need to handle thread synchronization issues.
One solution is to use a mutex (mutual exclusion). C++11 introduced mutex-related
classes, with all relevant functions provided in the <mutex> header file. std::mutex is the
basic mutex class in C++11, and you can create a mutex by constructing a std::mutex

object. Its member functions lock() and unlock() are used to lock and unlock the mutex,
respectively. However, in practice, it is better not to call these member functions directly,
as this requires calling unlock() at every critical section exit, including handling exceptions.
Instead, C++11 provides a RAII mechanism through the template class std::lock_guard

for managing mutexes.

7

https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.cppreference.com/w/cpp/thread/lock_guard

COMP461205: Computer Networks Fall 2024

In this lab, we recommend using std::unique_lock, which is more flexible compared to
std::lock_guard. It allows for explicit locking and unlocking of std::mutex objects. If
you are not yet familiar with how these classes work, consider writing one or two simple
programs to help you understand them. After completing Stage 2, you can verify your
implementation by running make stage2 .

5.3 Stage 3: Message Queue

Consider the following issue: If multiple receiving threads on the server receive messages
simultaneously, which message should the server process first? What happens to the
remaining messages? This issue arises because message reception by different threads
is asynchronous, and you cannot assume that a particular client’s message will always
arrive first. Therefore, messages should not be processed in a specific order based on
assumptions.

Moreover, the speed at which messages are received is uncertain, so a buffer is needed to
temporarily store a large number of messages that may arrive in a short time. Ideally,
we would like to process these messages in the order they arrived. This means that the
buffer should function as a first-in, first-out (FIFO) queue, known as a message queue, as
shown in Figure 4.

push
pop

front back

Figure 4: FIFO queue.

In the chatroom, there are n threads that may produce messages. Whenever a thread
receives a message, it attempts to push the message to the back of the queue. There is
also a thread responsible for processing and sending messages. Whenever this thread finds
that the queue is not empty, it attempts to pop a message from the front of the queue
and send it to each client. This is a classic producer-consumer problem, which can be
solved using semaphores2. Simply using mutexes is insufficient for solving this problem
because the consumer needs to check whether the queue is empty, and checking followed
by locking are not indivisible atomic operations.

In this lab, you are dealing with a model that has n producers and a single consumer,
and we assume that the message queue has an infinite length. C++11 provides a syn-
chronization primitive, std::condition_variable, to help us solve this problem more easily.
std::condition_variable has two important member functions: wait() and notify_one().
When a thread tries to acquire a lock on a mutex using std::unique_lock and calls wait(),
the thread will block and release the mutex until another thread calls notify_one(), at
which point the waiting thread is awakened and reacquires the mutex.

2for more information, refer to Section 12.5.4 of Computer Systems: A Programmer’s Perspective.

8

https://en.cppreference.com/w/cpp/thread/unique_lock
https://en.cppreference.com/w/cpp/thread/condition_variable

COMP461205: Computer Networks Fall 2024

Please implement the two functions in utils/msg_queue.cc using the methods mentioned
above. Afterward, as in the previous stages, run make stage3 to test your implementation.

5.4 Stage 4: Codec

Although TCP provides reliable data streaming, as you learned in Section 3.2, the recv()

function simply copies a chunk of data from a section of memory called the receive buffer in
the kernel. As a result, the received string might contain multiple messages concatenated
together, or some messages might be split at unpredictable points, requiring multiple recv

() calls before they are fully received. Run ./one-time_recv and you will see the following
output:

server sent a msg: hello!

server sent a msg: how are you?

server sent a msg: this is a test.

client received a msg: hello!how are you?this is a test.

In this program, the sending thread first sends hello!, how are you?, and this is a test.

one by one, and then waits for the thread to complete before starting the receiving thread.
As you can see, the three messages are “glued” together and received all at once.

To address this issue, you need to design an encoding and decoding scheme so that each
message is encoded before sending, and the received string can be correctly decoded into
the original messages regardless of message concatenation or truncation.

For the encoder, it takes a non-empty string as input and returns the encoded string.
For the decoder, it is an instance that continuously works, attempting to decode each in-
put string and returning a sequence of decoded messages. This means the current string
might be incomplete and temporarily undecodable, but since TCP provides a reliable
data stream, the incomplete part of the string along with subsequent input will eventu-
ally allow the original messages to be decoded. Formally, given k messages to be encoded,
m1,m2, . . . ,mk ∈ Σ+, the encoder implements an injective function f : Σ+ 7→ Σ+, re-
sulting in k encoded strings f(m1), f(m2), . . . , f(mk). There is a channel ch that takes a
sequence of strings as input and outputs another sequence of strings. Specifically:

ch((s1, s2, . . . , sk)) = (t1, t2, . . . , tp)

which satisfies the condition s1 + s2 + . . . + sk = t1 + t2 + . . . + tp, where “+” denotes
string concatenation. Let (e1, e2, . . . , ep) = ch((f(m1), f(m2), . . . , f(mk))). The decoder
will sequentially read ei (1 ≤ i ≤ p) and decode them back into m1,m2, . . . ,mk.

To help you understand how the decoder works, you can think of it as a combination of
a DFA (Deterministic Finite Automaton) M = (Q,Σ, δ, q0, F) and an injective function
f−1 : Σ+ 7→ Σ+. In M , F = {q0}, and f−1 is the inverse function of the encoding function
f . When the decoder receives a string s, M processes each character of s one by one
and transitions states. Each time M reaches an accepting state, it indicates that starting
from the initial state q0, given an input string w, M has returned to q0. In this case, w
is an accepted word. Let w1, w2, . . . , wk be the words accepted by M after processing s.
The decoder returns the sequence (f−1(w1), f

−1(w2), . . . , f
−1(wk)).

Here is an example:

9

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

COMP461205: Computer Networks Fall 2024

1. Suppose the messages sent are hello and computernetwork.

2. These messages are encoded as hello# and computernetwork#, respectively.

3. The received strings are hell, o#computer, and network#.

In this case:

1. Firstly the decoder receives hell, it cannot decode the original message, so it returns
().

2. Then the decoder receives o#computer, it returns the sequence (hello).

3. Finally, the decoder receives network#, it returns the sequence (computernetwork).

The following two pieces of C++ style pseudocode illustrate how the encoder and decoder
work.

• The encoder at the sender:

Codec encoder;

while ((string msg = gen()) != "") { // to generate a msg

auto encoded_msg = encoder.encode(msg);

send(encoded_msg);

}

• The decoder at the receiver:

Codec decoder;

while ((string str = recv()) != "") {

auto msgs = decoder.decode(str);

for (const auto &msg : msgs) {

print(msg);

}

}

The testing program will follow these conventions:

• Multiple Sub-Tests: Each test point will have several unrelated sub-tests.

• String Length Constraints: For the t-th sub-test, the i-th encoded string is
denoted as s

(t)
i . It is guaranteed that the total length of encoded strings

∑
i |s

(t)
i |

will not exceed 106, and the combined total length across all test cases
∑

t

∑
i |s

(t)
i |

will not exceed 108.

• Encoder Constraints: For an encoder, the encoded string f(s) for input s will be
considered valid if |f(s)| ≤ max{2|s|+ 1, |s|+ 9}.

• Decoder Constraints: When implementing the decoder, you will not know which
strings have been encoded by the encoder. Although encoding and decoding meth-
ods belong to the same class, they will be tested with separate instances.

10

COMP461205: Computer Networks Fall 2024

• Time Limit: The time limit for execution is 10 seconds.

• Character Set Size: The character set size |Σ| is 256, meaning all 256 possible
byte values may appear in the test cases.

• Bonus Test Point: There is a bonus test point. If your encoding meets the
constraint |f(s)| ≤ ⌈3|s|/2⌉, you will pass this test. Don’t worry if you can’t pass
the bonus test case; it won’t affect your final score for this lab.

Please open utils/codec.hh and utils/codec.cc to implement a codec. You can add any
necessary member variables in utils/codec.hh. Test your implementation using make stage4 .

Note: For each decoder instance, it will continuously process a complete data stream.
You may need information from previous processing steps when handling a string at any
given time. For example, since the string received by the decoder each time may not be
enough to decode a complete message, part of it may need to wait for subsequent input.
You will need to add some member variables to store the string that has not yet been
fully decoded.

Tip: If you need some ideas for this stage, the textbook’s Section 3.1.2 might be helpful.

5.5 Final Review and Execution

Congratulations on completing all the stages! You can test all the stages by running
make all-stage . If everything is working correctly, you can start the server with ./server

and then log into the chat room by running ./client . To allow people on your local
network to join the chat room, you can modify the DEFAULT_IP in demo/server_main.cc.

6 Submission

• Compress utils/tcp_socket.cc, server/server.cc, utils/msg_queue.cc, utils/codec.hh
, utils/codec.cc, and your report into a ZIP file and upload it.

• Submit a PDF report of approximately two pages, which should only include the
final test results and your understanding, reflections, or issues encountered during
each stage, along with the solutions.

• Optional: You can also include feedback or suggestions regarding the experiment
in the report.

11

	Introduction
	Important Notes
	A Brief Overview
	Network Topology
	Socket
	Concurrent Programming

	Getting Started
	Chat Room
	Stage 1: TCP Socket
	Stage 2: Server
	Stage 3: Message Queue
	Stage 4: Codec
	Final Review and Execution

	Submission

