Exercise 2.9.2. (a) Prove that the square a^2 of an integer a is congruent to 0 or 1 modulo 4.

(b) What are the possible values of a^2 modulo 8?

Proof of (a). We can write $a = 4k + r, 0 \le r \le 4$, then

$$a^2 \mod 4 = r^2 \mod 4 = 0 \text{ or } 1.$$

Proof of (b). Let a = 8k + r, then $r^2 \mod 8$ can be 0, 1 and 4.

Exercise 2.9.4. Prove that every integer a is congruent to the sum of its decimal digits modulo 9.

Proof. Denote by $(a_{k-1}a_{k-2}...a_0)$ the decimal form of a, that is, $a = \sum_{i=0}^{k-1} a_i \cdot 10^i$. We then have

$$a = \sum_{i=0}^{k-1} a_i \cdot 10^i \equiv \sum_{i=0}^{k-1} a_i \mod 9.$$

Exercise 2.9.5. Solve the congruence $2x \equiv 5$

- (a) modulo 9 and
- (b) modulo 6.

Solution. (a) Since $2 \times 5 \equiv 1 \mod 9$, $x \equiv 5 \times 5 \equiv 7 \mod 9$.

(b) There is no solution since $2x \mod 6$ is always an even number.

Exercise 2.9.8. Use Proposition (2.6) to prove the Chinese Remainder Theorem: Let m, n, a, b be integers, and assume that the greatest common divisor of m and n is 1. Then there is an integer x such that $x \equiv a \mod m$ and $x \equiv b \mod n$.

Proof. Since gcd(m, n) = 1, there exist s, t such that ms - nt = b - a, let x := a + ms, then x = b + nt, which shows $x \equiv a \mod m$ and $x \equiv b \mod n$.