Exercise 3.3.1. Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors (1, 2, -1, 0), (4, 8, -4, -3), (0, 1, 3, 4), (2, 5, 1, 4).

Solution. $\{(1,2,-1,0),(4,8,-4,-3),(0,1,3,4)\}$ is a basis.

Exercise 3.3.5. Find a basis for the space of symmetric $n \times n$ matrices.

Solution. $\{A^{(i,j)}: i \leq j\}$, where $A^{(i,j)}_{i,j} = A^{(i,j)}_{j,i} = 1$ with remaining elements equal to 0.

Exercise 3.3.6. Prove that a square matrix A is invertible if and only if its columns are linearly independent.

Proof. If A is invertible, Ax = 0 has only one trivial solution x = 0, which says

$$x_1 \cdot a_1 + x_2 \cdot a_2 + \ldots + x_n \cdot a_n = 0.$$

Exercise 3.3.7. Let V be the vector space of functions on the interval [0,1]. Prove that the functions x^3 , $\sin x$ and $\cos x$ are linearly independent.

Proof. Evaluate 3 points at $0, \frac{\pi}{6}, \frac{\pi}{4}$.